eIF5B gates the transition from translation initiation to elongation

Author:

Wang JinfanORCID,Johnson Alex G.ORCID,Lapointe Christopher P.ORCID,Choi JunhongORCID,Prabhakar Arjun,Chen Dong-Hua,Petrov Alexey N.,Puglisi Joseph D.ORCID

Abstract

Translation initiation determines both the quantity and identity of the protein product by establishing the reading frame for protein synthesis. In eukaryotic cells, numerous translation initiation factors (eIFs) prepare ribosomes for polypeptide elongation, yet the underlying dynamics of this process remain enigmatic1–4. A central question is how eukaryotic ribosomes transition from translation initiation to elongation. Here, we applied in vitro single-molecule fluorescence microscopy approaches to monitor directly in real time the pathways of late translation initiation and the transition to elongation using a purified yeast Saccharomyces cerevisiae translation system. This transition was remarkably slower in our eukaryotic system than that reported for Escherichia coli5–7. The slow entry to elongation was defined by a long residence time of eIF5B on the 80S ribosome after joining of individual ribosomal subunits, which is catalyzed by this universally conserved initiation factor. Inhibition of eIF5B GTPase activity following subunit joining prevented eIF5B dissociation from the 80S complex, thereby preventing elongation. Our findings illustrate how eIF5B dissociation serves as a kinetic checkpoint for the transition from initiation to elongation, and its release may be governed by a conformation of the ribosome complex that triggers GTP hydrolysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3