Author:
Holmberg Christian,Fleck Oliver,Hansen Heidi A.,Liu Cong,Slaaby Rita,Carr Antony M.,Nielsen Olaf
Abstract
The human UV-damaged DNA-binding protein Ddb1 associates with cullin 4 ubiquitin ligases implicated in nucleotide excision repair (NER). These complexes also contain the signalosome (CSN), but NER-relevant ubiquitination targets have not yet been identified. We report that fission yeast Ddb1, Cullin 4 (Pcu4), and CSN subunits Csn1 and Csn2 are required for degradation of the ribonucleotide reductase (RNR) inhibitor protein Spd1. Ddb1-deficient cells have >20-fold increased spontaneous mutation rate. This is partly dependent on the error-prone translesion DNA polymerases. Spd1 deletion substantially reduced the mutation rate, suggesting that insufficient RNR activity accounts for ∼50% of observed mutations. Epistasis analysis indicated that Ddb1 contributed to mutation avoidance and tolerance to DNA damage in a pathway distinct from NER. Finally, we show that Ddb1/Csn1/Cullin 4-mediated Spd1 degradation becomes essential when cells differentiate into meiosis. These results suggest that Ddb1, along with Cullin 4 and the signalosome, constitute a major pathway controlling genome stability, repair, and differentiation via RNR regulation.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献