Long-term reciprocal gene flow in wild and domestic geese reveals complex domestication history

Author:

Heikkinen Marja E.ORCID,Ruokonen Minna,White Thomas A.,Alexander Michelle M.ORCID,Gündüz İslamORCID,Dobney Keith M.ORCID,Aspi JouniORCID,Searle Jeremy B.ORCID,Pyhäjärvi TanjaORCID

Abstract

AbstractHybridization has frequently been observed between wild and domestic species and can substantially impact genetic diversity of both counterparts. Geese show some of the highest levels of interspecific hybridization across all bird orders, and two of the goose species in genus Anser have been domesticated providing excellent opportunity for joint study of domestication and hybridization. Until now, knowledge on the details of the goose domestication process has come from archaeological findings and historical writings supplemented with few studies based on mitochondrial DNA. Here, we used genome-wide markers to make the first genome-based inference of the timing of European goose domestication. We also analyzed the impact of hybridization on the genome-wide genetic variation in current populations of the European domestic goose and its wild progenitor: the greylag goose (Anser anser). Our dataset consisted of 58 wild greylags sampled around Eurasia and 75 domestic geese representing 14 breeds genotyped for 33,527 single nucleotide polymorphisms. Demographic reconstruction and clustering analysis suggested that divergence between wild and domestic geese around 5,300 generations ago was followed by long-term genetic exchange, and that greylag populations have 3.2–58.0% admixture proportions with domestic geese, with distinct geographic patterns. Surprisingly, many modern European breeds share considerable (> 10%) ancestry with Chinese domestic geese that is derived from the swan goose Anser cygnoid. We show that domestication process can progress despite continued and pervasive gene flow from the wild form.Significance StatementReproductive isolation between conspecific wild and domestic populations is a cornerstone of the domestication process, yet gene flow between such wild and domestic populations has been frequently documented. European domestic geese and their wild progenitor (greylags) co-occur and can hybridize and we show that they represent a particularly persuasive case where wild and domestic populations are not isolated gene pools. Our study makes a first genome-based estimate of goose domestication, which up to now has mostly relied on archaeological findings and historical writings. We show ongoing gene flow between greylags and European domestic geese following domestication, but we also observe a surprisingly large contribution of Chinese domestic geese (a separate species) to the genetic make-up of European domestic geese.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3