Multi-model inference of non-random mating from an information theoretic approach

Author:

Carvajal-Rodriguez Antonio

Abstract

AbstractNon-random mating has a significant impact on the evolution of organisms. Here, I developed a modelling framework for discrete traits (with any number of phenotypes) to explore different models connecting the non-random mating causes (intra sexual competition and/or mate choice) and their consequences (sexual selection and/or assortative mating).I derived the formulas for the maximum likelihood estimates of each model and used information criteria for performing multimodel inference. Simulation results showed a good performance of both model selection and parameter estimation. The methodology was applied to data from Galician Littorina saxatilis ecotypes, to show that the mating pattern is better described by models with two parameters that involve both mate choice and intrasexual competition, generating positive assortative mating plus female sexual selection.As far as I know, this is the first standardized methodology for model selection and multimodel inference of mating parameters for discrete traits. The advantages of this framework include the ability of setting up models from which the parameters connect causes, as intrasexual competition and mate choice, with their outcome in the form of data patterns of sexual selection and assortative mating. For some models, the parameters may have a double effect i.e. they cause both kind of patterns, while for others models there are separated parameters for one kind of pattern or another.The full methodology was implemented in a software called InfoMating (available at http://acraaj.webs6.uvigo.es/InfoMating/Infomating.htm).

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Model selection for ecologists: the worldviews of AIC and BIC

2. A graphical framework for model selection criteria and significance tests: refutation, confirmation and ecology;Methods in Ecology and Evolution,2017

3. Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. Pp. 267–281 in B. N. Petrov , and F. Csaki , eds. Second International Symposium on Information Theory, Budapest: Akademiai Kiado.

4. AIC Model Selection in Overdispersed Capture-Recapture Data

5. Truth, models, model sets, AIC, and multimodel inference: A Bayesian perspective;The Journal of Wildlife Management,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3