CDK12/CDK13 inhibition disrupts a transcriptional program critical for glioblastoma survival

Author:

Lier Silje,Lund Solveig Osnes,Lipsa Anuja,Frauenknecht Katrin B. M.ORCID,Rein Idun Dale,Jain PreetiORCID,Lång Anna Ulrika,Lång Emma Helena,Meyer Niklas,Dutta Aparajita,Anand Santosh,Nesse Gaute Johan,Johansen Rune Forstrøm,Klungland Arne,Rinholm Johanne Egge,Bøe Stig OveORCID,Anand Ashish,Pollard Steven MichaelORCID,Niclou Simone P.,Lerdrup Mads,Pandey Deo PrakashORCID

Abstract

AbstractGlioblastoma is the most prevalent and aggressive malignant tumor of the central nervous system. With a median overall survival of only one year, glioblastoma patients have a particularly poor prognosis, highlighting a clear need for novel therapeutic strategies to target this disease. Transcriptional cyclin-dependent kinases (tCDK), which phosphorylate key residues of RNA polymerase II (RNAPII) c-terminal domain (CTD), play a major role in sustaining aberrant transcriptional programs that are key to development and maintenance of cancer cells. Here, we show that either pharmacological inhibition or genetic ablation of the tCDKs, CDK12 and CDK13, markedly reduces both the proliferation and migratory capacity of glioma cells and patient-derived organoids. Using a xenograft mouse model, we demonstrate that CDK12/13 inhibition not only reduces glioma growthin vivo. Mechanistically, inhibition of CDK12/CDK13 leads to a genome-wide abrogation of RNAPII CTD phosphorylation, which in turn disrupts transcription and cell cycle progression in glioma cells. In summary, the results provide proof-of-concept for the potential of CDK12 and CDK13 as therapeutic targets for glioblastoma.Significance statementGlioblastoma is a common, aggressive, and invasive type of brain tumor that is usually fatal. The standard treatment for glioblastoma patients is surgical resection, radiotherapy, and chemotherapy with DNA-alkylating agents, and unfortunately current treatments only extend overall survival by a few months. It is therefore critical to identify and target additional biological processes in this disease. Here, we reveal that targeting a specific transcriptional addiction for glioma cells by inhibition of CDK12/CDK13 disrupts glioma-specific transcription and cell cycle progression and has potential to provide a new therapeutic strategy for glioblastoma.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3