A robust continuous wavelet transform (CWT) based for R-peak detection method of ECG

Author:

Sahmarany Lola ElORCID,Alshammari MahaORCID,Tamal MahbubunnabiORCID,Alomari AbdulhakeemORCID

Abstract

AbstractCardiovascular disease is the main cause of death worldwide. An electrocardiogram (ECG) signals is typically used as the first diagnosis tool to detect abnormality in the heart signal. Reliable detection of R-peak in the ECG signal indicates various heart malfunctions (e.g., arrhythmia) and allows for proactive prevention of death due to cardiovascular disease. Though several R-peak detection methods have been proposed, the existence of noise in ECG signals and changes in QRS morphology compromise the robustness and reliability of these methods. Therefore, the need for a reliable detection of R-peak is crucial for diagnosis of heart abnormalities. This paper introduces a time-efficient and novel continuous wavelet transform (CWT) based method for R-peak detection. The proposed method first transforms the ECG signal in to time-frequency spectrum. The contributions of different frequencies at every time point are then calculated from the time-frequency spectrum to efficiently reduce the impact of noise and generate a summed frequency signal. A threshold technique is also proposed to detect the R-peak from the newly generated signal allows. The MIT-BIH arrhythmia database is used as a reference for validation and comparison of the proposed method with the results of other existing R-peak detection methods. The experimental results prove the efficiency and robustness of the developed method on noisy ECG signals with changes in QRS morphology with 99.87% sensitivity, 99.76% positive prediction value and a detection error rate of only 0.37%. In addition to the high accuracy in detecting R-peaks, the ease-to-use and fast-processing make the proposed method an efficient and reliable tool for real-time abnormality detection in ECG signal.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. Cardiovascular diseases (CVDs) (June 2021). URL https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

2. Y. Sattar , L. Chhabra , Electrocardiogram, StatPearls Publishing, 2021. URL http://www.ncbi.nlm.nih.gov/books/NBK549803/

3. Fundamentals of Electrocardiography Interpretation

4. Influence of the Main Filter on QRS-amplitude and Duration in Human Electrocardiogram, Meas;Sci. Rev,2019

5. S. Nayak , M. Soni , D. Bansal , Filtering techniques for ECG signal processing, in: and others (Ed.), IJREAS. 2., 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3