Cytokine storm mitigation for exogenous immune agonists

Author:

Kareva IrinaORCID,Gevertz Jana L.

Abstract

AbstractCytokine storm is a life-threatening inflammatory response characterized by hyperactivation of the immune system. It can be caused by various therapies, auto-immune conditions, or pathogens, such as respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes coronavirus disease COVID-19. Here we propose a conceptual mathematical model describing the phenomenology of cytokine-immune interactions when a tumor is treated by an exogenous immune cell agonist which has the potential to cause a cytokine storm, such as CAR T cell therapy. Numerical simulations reveal that as a function of just two model parameters, the same drug dose and regimen could result in one of four outcomes: treatment success without a storm, treatment success with a storm, treatment failure without a storm, and treatment failure with a storm. We then explore a scenario in which tumor control is accompanied by a storm and ask if it is possible to modulate the duration and frequency of drug administration (without changing the cumulative dose) in order to preserve efficacy while preventing the storm. Simulations reveal existence of a “sweet spot” in protocol space (number versus spacing of doses) for which tumor control is achieved without inducing a cytokine storm. This theoretical model, which contains a number of parameters that can be estimated experimentally, contributes to our understanding of what triggers a cytokine storm, and how the likelihood of its occurrence can be mitigated.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. The pathogenesis and treatment of the Cytokine Storm’in COVID-19;Journal of infection. Elsevier,2020

2. Cytokine dysregulation as a mechanism of graft versus host disease;Current opinion in immunology. Elsevier,1993

3. Eloseily EM , Cron RQ. Bacteria-associated cytokine storm syndrome. Cytokine Storm Syndrome. Springer; 2019. p. 307–317.

4. An interferon-γ-related cytokine storm in SARS patients;Journal of medical virology. Wiley Online Library,2005

5. Unanswered questions about the 1918 influenza pandemic: origin, pathology, and the virus itself;The Lancet Infectious Diseases. Elsevier,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3