Mathematical Model Predicts Tumor Control Patterns Induced by Fast and Slow CTL Killing Mechanisms

Author:

Wang YixuanORCID,Bergman Daniel,Trujillo Erica,Pearson Alexander T.,Sweis Randy F.,Jackson Trachette L.

Abstract

AbstractImmunotherapy has dramatically transformed the cancer treatment landscape largely due to the efficacy of immune checkpoint inhibitors (ICIs). Although ICIs have shown promising results for many patients, the low response rates in many cancers highlight the ongoing challenges in cancer treatment. Cytotoxic T lymphocytes (CTLs) execute their cell-killing function via two distinct mechanisms: a fast-acting, perforin-mediated process and a slower, Fas ligand (FasL)-driven path-way. Evidence also suggests that the preferred killing mechanism of CTLs depends on the anti-genicity of tumor cells. To determine the critical factors affecting responses to ICIs, we construct an ordinary differential equation model describingin vivotumor-immune dynamics in the presence of active or blocked PD-1/PD-L1 immune checkpoint. Specifically, we identify important aspects of the tumor-immune landscape that affect tumor size and composition in the short and long term. By generating a virtual cohort with differential tumor and immune attributes, we also simulate the therapeutic outcomes of immune checkpoint blockade in a heterogenous population. In this way, we identify key tumor and immune characteristics that are associated with tumor elimination, dor-mancy, and escape. Our analysis sheds light on which fraction of a population potentially responds well to ICIs and ways to enhance therapeutic outcomes with combination therapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3