Abstract
AbstractMulti-strain infection is a common yet under-investigated phenomenon of many pathogens. Currently, biologists analyzing SNP information have to discard mixed infection samples, because existing downstream analyses require monogenomic inputs. Such a protocol impedes our understanding of the underlying genetic diversity, co-infection patterns, and genomic relatedness of pathogens. A reliable tool to learn and resolve the SNP haplotypes from polygenomic data is an urgent need in molecular epidemiology. In this work, we develop a slice sampling Markov Chain Monte Carlo algorithm, named SNP-Slice, to learn not only the SNP haplotypes of all strains in the populations but also which strains infect which hosts. Our method reconstructs SNP haplotypes and individual heterozygosities accurately without reference panels and outperforms the state of art methods at estimating the multiplicity of infections and allele frequencies. Thus, SNP-Slice introduces a novel approach to address polygenomic data and opens a new avenue for resolving complex infection patterns in molecular surveillance. We illustrate the performance of SNP-Slice on empirical malaria and HIV datasets and provide recommendations for the practical use of the method.
Publisher
Cold Spring Harbor Laboratory