A Template for Translational Bioinformatics: Facilitating Multimodal Data Analyses in Preclinical Models of Neurological Injury

Author:

Gaudio Hunter A.ORCID,Padmanabhan Viveknarayanan,Landis William P.ORCID,Silva Luiz E. V.ORCID,Slovis JuliaORCID,Starr Jonathan,Weeks M. Katie,Widmann Nicholas J.ORCID,Forti Rodrigo M.ORCID,Laurent Gerard H.ORCID,Ranieri Nicolina R.ORCID,Mi Frank,Degani Rinat E.ORCID,Hallowell ThomasORCID,Delso Nile,Calkins HannahORCID,Dobrzynski ChristianaORCID,Haddad Sophie,Kao Shih-Han,Hwang MisunORCID,Shi LingyunORCID,Baker Wesley B.ORCID,Tsui FuchiangORCID,Morgan Ryan W.ORCID,Kilbaugh Todd J.ORCID,Ko Tiffany S.ORCID

Abstract

AbstractBackgroundPediatric neurological injury and disease is a critical public health issue due to increasing rates of survival from primary injuries (e.g., cardiac arrest, traumatic brain injury) and a lack of monitoring technologies and therapeutics for the treatment of secondary neurological injury. Translational, preclinical research facilitates the development of solutions to address this growing issue but is hindered by a lack of available data frameworks and standards for the management, processing, and analysis of multimodal data sets.MethodsHere, we present a generalizable data framework that was implemented for large animal research at the Children’s Hospital of Philadelphia to address this technological gap. The presented framework culminates in an interactive dashboard for exploratory analysis and filtered data set download.ResultsCompared with existing clinical and preclinical data management solutions, the presented framework accommodates heterogeneous data types (single measure, repeated measures, time series, and imaging), integrates data sets across various experimental models, and facilitates dynamic visualization of integrated data sets. We present a use case of this framework for predictive model development for intra-arrest prediction of cardiopulmonary resuscitation outcome.ConclusionsThe described preclinical data framework may serve as a template to aid in data management efforts in other translational research labs that generate heterogeneous data sets and require a dynamic platform that can easily evolve alongside their research.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3