Federated analysis of the contribution of recessive coding variants to 29,745 developmental disorder patients from diverse populations

Author:

Chundru V. KartikORCID,Zhang Zhancheng,Walter KlaudiaORCID,Lindsay SarahORCID,Danecek PetrORCID,Eberhardt Ruth Y.ORCID,Gardner Eugene J.ORCID,Malawsky Daniel S.,Wigdor Emilie M.ORCID,Torene Rebecca,Retterer KyleORCID,Wright Caroline F.ORCID,McWalter KirstyORCID,Sheridan EamonnORCID,Firth Helen V.ORCID,Hurles Matthew E.ORCID,Samocha Kaitlin E.ORCID,Ustach Vincent D.ORCID,Martin Hilary C.ORCID

Abstract

AbstractAutosomal recessive (AR) coding variants are a well-known cause of rare disorders. We quantified the contribution of these variants to developmental disorders (DDs) in the largest and most ancestrally diverse sample to date, comprising 29,745 trios from the Deciphering Developmental Disorders (DDD) study and the genetic diagnostics company GeneDx, of whom 20.4% have genetically-inferred non-European ancestries. The estimated fraction of patients attributable to exome-wide AR coding variants ranged from ∼2% to ∼18% across genetically-inferred ancestry groups, and was significantly correlated with the average autozygosity (r=0.99, p=5x10-6). Established AR DD-associated (ARDD) genes explained 90% of the total AR coding burden, and this was not significantly different between probands with genetically-inferred European versus non-European ancestries. Approximately half the burden in these established genes was explained by variants not already reported as pathogenic in ClinVar. We estimated that ∼1% of undiagnosed patients in both cohorts were attributable to damaging biallelic genotypes involving missense variants in established ARDD genes, highlighting the challenge in interpreting these. By testing for gene-specific enrichment of damaging biallelic genotypes, we identified two novel ARDD genes passing Bonferroni correction,KBTBD2(p=1x10-7) andCRELD1(p=9x10-8). Several other novel or recently-reported candidate genes were identified at a more lenient 5% false-discovery rate, includingZDHHC16andHECTD4. This study expands our understanding of the genetic architecture of DDs across diverse genetically-inferred ancestry groups and suggests that improving strategies for interpreting missense variants in known ARDD genes may allow us to diagnose more patients than discovering the remaining genes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3