The machine learning algorithm identified COL7A1 as a diagnostic marker for LUSC and HNSC

Author:

Wang Chenyu,Ma Yongxin,Qi Jiaojiao,Jiang Xianglai

Abstract

AbstractSquamous cell carcinomas (SCCs) comes from different parts, but there may be similar tumorigenic signaling pathways and metabolism, and different squamous cell carcinoma has a similar mutation landscape and squamous differentiation expression. Studying the expression profile of common SCCs is helpful to find biomarkers with diagnostic and prognostic significance for a variety of squamous cell carcinoma. Lung squamous cell carcinoma (LUSC), head and neck squamous cell carcinoma (HNSC), and ‘squamous cell cancer’ in esophageal carcinoma (ESCA) and cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) in The Cancer Genome Atlas (TCGA) database were used as training sets. The relevant data sets in the Gene Expression Omnibus (GEO) database were selected as validation sets. Machine learning algorithms were used to screen out factors with high accuracy in the diagnosis of SCCs as core genes, and explore their effects on patient prognosis and immunotherapy. COL7A1 (Collagen Type VII Alpha 1 Chain) has high accuracy in the diagnosis of LUSC and HCSC, whether in the training set (LUSC _ AUC: 0.987; HNSC _ AUC: 0.933) or validation set (LUSC _ AUC: 1.000; HNSC _ AUC: 0.967). Moreover, the expression of COL7A1 was significantly correlated with shorter OS and DSS in HNSC and LUSC patients, and was also significantly negatively correlated with IPS in LUSC patients treated with CTLA4 (-) PD1 (+), CTLA4 (+) PD1 (-) and CTLA4 (+) PD1 (+). COL7A1 has the potential to be used as a diagnostic and prognostic marker for LUSC and HNSC and to predict the efficacy of LUSC immunotherapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3