Abstract
AbstractHow do we gain general insights from limited novel experiences? Humans and animals have a striking ability to learn relationships between experienced items, enabling efficient generalization and rapid assimilation of new information. One fundamental instance of such relational learning is transitive inference (learnA>BandB>C, inferA>C), which can be quickly and globally reorganized upon learning a new item (learnA>B>CandD>E>F, thenC>D, and inferB>E). Despite considerable study, neural mechanisms of transitive inference and fast reassembly of existing knowledge remain elusive. Here we adopt a meta-learning (“learning-to-learn”) approach. We train artificial neural networks, endowed with synaptic plasticity and neuromodulation, to be able to learn novel orderings of arbitrary stimuli from repeated presentation of stimulus pairs. We then obtain a complete mechanistic understanding of this discovered neural learning algorithm. Remarkably, this learning involves active cognition: items from previous trials are selectively reinstated in working memory, enabling delayed, self-generated learning and knowledge reassembly. These findings identify a new mechanism for relational learning and insight, suggest new interpretations of neural activity in cognitive tasks, and highlight a novel approach to discovering neural mechanisms capable of supporting cognitive behaviors.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献