TheDrosophilaTumour Suppressor Lgl and Vap33 activate the Hippo pathway by a dual mechanism, involving RtGEF/Git/Arf79F and inhibition of the V-ATPase

Author:

Portela Marta,Mukherjee Swastik,Paul Sayantanee,La Marca John E.,Parsons Linda M.,Veraksa Alexey,Richardson Helena E.ORCID

Abstract

AbstractThe tumour suppressor, Lethal (2) giant larvae (Lgl), is an evolutionarily conserved protein that was discovered in the vinegar fly,Drosophila, where its depletion results in tissue overgrowth and loss of cell polarity and tissue architecture. Our previous studies have revealed a new role for Lgl in linking cell polarity and tissue growth through regulation of the Notch (proliferation and differentiation) and the Hippo (negative tissue growth control) signalling pathways. Moreover, Lgl regulates vesicle acidification, via the Vacuolar ATPase (V-ATPase), and we showed that Lgl inhibits V-ATPase activity through Vap33 (a Vamp (v-SNARE)-associated protein, involved in endo-lysosomal trafficking) to regulate the Notch pathway. However, how Lgl acts to regulate the Hippo pathway was unclear. In this current study, we show that V-ATPase activity inhibits the Hippo pathway, whereas Vap33 acts to activate Hippo signalling. Using anin vivoaffinity-purification approach we found that Vap33 binds to the actin cytoskeletal regulators RtGEF (Pix, a Rho-type guanine nucleotide exchange factor) and Git (G protein-coupled receptor kinase interacting ArfGAP), which also bind to the Hpo protein kinase, and are involved in the activation of the Hippo pathway. Vap33 genetically interacts with RtGEF and Git in Hippo pathway regulation. Additionally, we show that the ADP ribosylation factor Arf79F (Arf1), which is a Hpo interactor, is involved in the inhibition of the Hippo pathway. Altogether our data suggests that Lgl acts via Vap33 to activate the Hippo pathway by a dual mechanism, 1) through interaction with RtGEF/Git/Arf79F, and 2) through interaction and inhibition of the V-ATPase, thereby controlling epithelial tissue growth.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3