Abstract
AbstractTo conserve biodiversity, it is imperative to maintain and restore sufficient amounts of functional habitat networks. Hence, locating remaining forests with natural structures and processes over landscapes and large regions is a key task. We integrated machine learning (Random Forest) and open landscape data to scan all forest landscapes in Sweden with a 1 ha spatial resolution with respect to the relative likelihood of hosting High Conservation Value Forests (HCVF). Using independent spatial stand-and plot-level validation data we confirmed that our predictions (ROC AUC in the range of 0.89 - 0.90) correctly represent forests with different levels of naturalness, from deteriorated to those with high and associated biodiversity conservation values. Given ambitious national and international conservation objectives, and increasingly intensive forestry, our model and the resulting wall-to-wall mapping fills an urgent gap for assessing fulfilment of evidence-based conservation targets, spatial planning, and designing forest landscape restoration.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献