Seed tuber imprinting shapes the next-generation potato microbiome

Author:

Song YangORCID,Spooren Jelle,Jongekrijg Casper D.,Manders Ellen H.H.,de Jonge RonnieORCID,Pieterse Corné M.J.ORCID,Bakker Peter A.H.M.,Berendsen Roeland L.ORCID

Abstract

AbstractPotato seed tubers are colonized and inhabited by soil-borne microbes, some of which can positively or negatively impact the performance of the emerging daughter plant in the next season. In this study, we investigated the intergenerational inheritance of microbiota from seed tubers to next-season daughter plants by amplicon sequencing of bacterial and fungal microbiota associated with tubers and roots of two seed potato genotypes produced in six different fields. We observed that field of production and potato genotype significantly affected the seed tuber microbiome composition and that these differences persisted during winter storage of the seed tubers. When seed tubers from different production fields were planted in a single trial field, the microbiomes of daughter tubers and roots of the emerging plants could still be distinguished according to the field of origin of the seed tuber. Remarkably, we found little evidence of direct vertical inheritance of field-unique microbes from the seed tuber to the daughter tubers or roots. Hence, we hypothesize that this intergenerational “memory” is imprinted in the seed tuber, resulting in differential microbiome assembly strategies depending on the field of production of the seed tuber.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3