PARP1 Inhibition Halts EBV+ Lymphoma Progression by Disrupting the EBNA2/MYC Axis

Author:

Napoletani Giorgia,Soldan Samantha S.,Kannan Toshitha,Preston-Alp Sarah,Vogel Peter,Maestri Davide,Caruso Lisa Beatrice,Kossenkov Andrew,Sobotka Asher,Lieberman Paul M.,Tempera ItaloORCID

Abstract

AbstractPARP1 has been shown to regulate EBV latency. However, the therapeutic effect of PARP1 inhibitors on EBV+ lymphomagenesis has not yet been explored. Here, we show that PARPi BMN-673 has a potent anti-tumor effect on EBV-driven LCL in a mouse xenograft model. We found that PARP1 inhibition induces a dramatic transcriptional reprogramming of LCLs driven largely by the reduction of theMYConcogene expression and dysregulation of MYC targets, bothin vivo and in vitro. PARP1 inhibition also reduced the expression of viral oncoprotein EBNA2, which we previously demonstrated depends on PARP1 for activation of MYC. Further, we show that PARP1 inhibition blocks the chromatin association of MYC, EBNA2, and tumor suppressor p53. Overall, our study strengthens the central role of PARP1 in EBV malignant transformation and identifies the EBNA2/MYC pathway as a target of PARP1 inhibitors and its utility for the treatment of EBNA2-driven EBV-associated cancers.Significance StatementA promising approach to treating EBV-driven malignancies involves targeting cancer and EBV biology. However, investigating host factors that co-regulate EBV latent gene expression, such as PARP1, has been incomplete. Our study demonstrates that the PARP1 inhibitor BMN-673 effectively reduces EBV-driven tumors and metastasis in an LCL xenograft model. Additionally, we have identified potential dysregulated mechanisms associated with PARP1 inhibition. These findings strengthen the role of PARP1 in EBV+ lymphomas and establish a link between PARP1 and the EBNA2/MYC axis. This has important implications for developing therapeutic approaches to various EBV-associated malignancies.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3