Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive technique measuring brain activity by detecting blood flow changes, enabling the study of cognitive processes and brain states. However, the high dimensionality of resting-state (rs) fMRI data poses challenges for machine learning applications. Feature extraction (FE) and feature selection (FS) are critical for developing efficient machine learning models. Transforming raw data into meaningful features and selecting the most relevant ones, allows models to achieve improved generalization, accuracy, and robustness. Previous studies demonstrated the effectiveness of FE and FS methods for analyzing rs-fMRI data for Autism Spectrum Disorder (ASD) classification. In this study, we apply a random walks technique for correlation-based brain networks to extract features from rs-fMRI data, specifically the number of random walkers on each brain area. We then select significant features, i.e., brain areas with a statistically significant difference in the number of random walkers between neurotypical and ASD subjects. Our random walks-based FE and FS approach reduces the number of brain areas used in the classification and converts the functional connectivity matrix into a manageable vector, enabling faster computation. We examined 16 pipelines and tested support vector machines (SVM) and logistic regression for classification, identifying the optimal pipeline to consist of no filtering, no global signal regression (GSR), and FS, achieving a 76.54% classification accuracy with SVM. Our findings suggest that random walks capture a wide range of interactions and dynamics in brain networks, providing a deeper characterization of their structure and function, ultimately enhancing classification performance.CCS CONCEPTSComputing methodologies→Machine learning
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献