Picky with peakpicking: assessing chromatographic peak quality with simple metrics in metabolomics

Author:

Kumler WilliamORCID,Hazelton Bryna J.ORCID,Ingalls Anitra E.ORCID

Abstract

AbstractBackgroundChromatographic peakpicking continues to represent a significant bottleneck in automated LC-MS workflows. Uncontrolled false discovery rates and the lack of manually-calibrated quality metrics require researchers to visually evaluate individual peaks, requiring large amounts of time and breaking replicability. This problem is exacerbated in noisy environmental datasets and for novel separation methods such as hydrophilic interaction columns in metabolomics, creating a demand for a simple, intuitive, and robust metric of peak quality.ResultsHere, we manually labeled four HILIC oceanographic particulate metabolite datasets to assess the performance of individual peak quality metrics. We used these datasets to construct a predictive model calibrated to the likelihood that visual inspection by an MS expert would include a given mass feature in the downstream analysis. We implemented two novel peak quality metrics, a custom signal-to-noise metric and a test of similarity to a bell curve, both calculated from the raw data in the extracted ion chromatogram and found that these outperformed existing measurements of peak quality. A simple logistic regression model built on two metrics reduced the fraction of false positives in the analysis from 70-80% down to 1-5% and showed minimal overfitting when applied to novel datasets. We then explored the implications of this quality thresholding on the conclusions obtained by the downstream analysis and found that while only 10% of the variance in the dataset could be explained by depth in the default output from the peakpicker, approximately 40% of the variance was explained when restricted to high-quality peaks alone.ConclusionsWe conclude that the poor performance of peakpicking algorithms significantly reduces the power of both univariate and multivariate statistical analyses to detect environmental differences. We demonstrate that simple models built on intuitive metrics and derived from the raw data are more robust and can outperform more complex models when applied to new data. Finally, we show that in properly curated datasets, depth is a major driver of variability in the marine microbial metabolome and identify several interesting metabolite trends for future investigation.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3