A Motion Transformer for Single Particle Tracking in Fluorescence Microscopy Images

Author:

Zhang YudongORCID,Yang GeORCID

Abstract

AbstractSingle particle tracking is an important image analysis technique widely used in biomedical sciences to follow the movement of sub-cellular structures, which typically appear as individual particles in fluorescence microscopy images. In practice, the low signal-to-noise ratio (SNR) of fluorescence microscopy images as well as the high density and complex movement of subcellular structures pose substantial technical challenges for accurate and robust tracking. In this paper, we propose a novel Transformer-based single particle tracking method called Motion Transformer Tracker (MoTT). By using its attention mechanism to learn complex particle behaviors from past and hypothetical future tracklets (i.e., fragments of trajectories), MoTT estimates the matching probabilities between each live/established tracklet and its multiple hypothesis tracklets simultaneously, as well as the existence probability and position of each live tracklet. Global optimization is then used to find the overall best matching for all live tracklets. For those tracklets with high existence probabilities but missing detections due to e.g., low SNRs, MoTT utilizes its estimated particle positions to substitute for the missed detections, a strategy we refer to as relinking in this study. Experiments have confirmed that this strategy substantially alleviates the impact of missed detections and enhances the robustness of our tracking method. Overall, our method substantially outperforms competing state-of-the-art methods on the ISBI Particle Tracking Challenge datasets. It provides a powerful tool for studying the complex spatiotemporal behavior of subcellular structures. The source code is publicly available athttps://github.com/imzhangyd/MoTT.git.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3