Single-molecule tracking reveals dual front door/back door inhibition of Cel7A cellulase by its product cellobiose

Author:

Nong DaguanORCID,Haviland Zachary K.,Zexer Nerya,Pfaff Sarah J.,Cosgrove Daniel J.ORCID,Tien Ming,Anderson Charles T.,Hancock William O.ORCID

Abstract

AbstractDegrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity ofTrichoderma reeseiCel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also decreases the binding rate of Cel7A to immobilized cellulose but does not slow the binding rate of an isolated carbohydrate-binding module, suggesting that cellobiose inhibits binding of the catalytic domain of Cel7A to cellulose. In support of this, cellopentaose, which is considerably larger than cellobiose, also slows the binding rate of Cel7A to cellulose without affecting the velocity and run length. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the ‘back door’ product release site to slow activity and to the ‘front door’ substrate binding tunnel to inhibit interaction with cellulose. These findings point to new strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.SignificanceCellulose, a polymer of repeating glucose subunits, is the primary component of plant cell walls. A promising route to reducing petrochemical use is digesting plant biomass to glucose and fermenting glucose to bioethanol. Cel7A is a model cellulase enzyme that degrades cellulose from one end to generate the disaccharide product, cellobiose. Because industrial-scale bioethanol generation generates high concentrations of cellobiose, product inhibition is a significant concern. We investigated product inhibition of Cel7A by cellobiose at the single-molecule level and found that cellobiose both slows the movement of Cel7 along cellulose and inhibits the initial binding of Cel7 to cellulose. These results suggest that cellobiose binds to the enzyme at more than one site and achieves its inhibition by multiple mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3