Dynamic Structure-based Pharmacophore Models for Virtual Screening of Small Molecule Libraries Targeting the YB-1

Author:

Oktay Lalehan,Sayyah Ehsan,Durdağı Serdar

Abstract

AbstractIn drug discovery, ligand-based techniques offer rapid screening, whereas structure-based approaches provide deeper insights but are time-consuming. Hybrid methods like structure-based pharmacophore models combine advantages for accurate screening of large ligand libraries. However, there are substantial limits to build structure-based pharmacophore models. Static models relying on a single co-crystallized structure or docking pose often fall short in capturing the dynamic nature of binding interactions. In this study, we present dynamic structure-based pharmacophore models, aimed at better representing physiological conditions and addressing these challenges. The urgent need for improved cancer treatment has led to the search for new chemotherapeutic strategies. Y box binding protein 1 (YB-1) is a multifunctional protein associated with tumor progression and treatment resistance in various cancers. For the first time in the literature, our study utilizes a known small molecule YB-1 inhibitor (SU056) bound to the active regions of the RNA-binding sites to develop dynamic structure-based pharmacophores. These models were then used in the screening of large ligand libraries.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3