CARs are organized in nanodomains in the plasma membrane of T cells that accumulate at tumor contact sites

Author:

Verbruggen Christina,Gehrke Leon,Banholzer Nicole,Ghosh Arindam,Reinhard Sebastian,Weber Justus,Doose Sören,Einsele Hermann,Hudecek Michael,Nerreter Thomas,Sauer Markus

Abstract

AbstractChimeric antigen receptors (CARs) are synthetic immune receptors that are expressed in T cells through genetic engineering. CAR-T cells have been successfully used to eradicate very advanced leukemias and lymphomas and their functional properties have been intensively studied. However, relatively little is known about the spatiotemporal expression and organization of CARs on the T-cell membrane and how this influences their efficacy. Here, we applied super-resolution microscopy to visualize CD19-, ROR1-, and ROR2-specific CARs in human CD4+and CD8+T cells that were engineered with lentiviral and transposon-mediated gene transfer. Our data show that the majority of CARs is organized in nanodomains virtually independent of the T cell type, CAR construct and expression level. Quantitative analyses revealed a slightly higher CAR density in transposon-engineered T cells correlating with higher antigen sensitivity and faster resolution of anti-tumor functions compared to lentivirally-engineered T cells. Live-cell fluorescence imaging revealed that both, CAR nanodomains and CAR monomers accumulate at tumor contact sites and form multifocal immunological synapses. Our study provides novel insights into the membrane organization of CARs with single-molecule resolution and illustrates the potential of advanced microscopy to inform the rational design of synthetic immune receptors for applications in immune cell therapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3