Filter-aided extracellular vesicle enrichment (FAEVEr)

Author:

Pauwels JarneORCID,Van de Steene TessaORCID,Van de Velde Jana,Eyckerman SvenORCID,Gevaert KrisORCID

Abstract

A.AbstractExtracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward analysis of EVs as they are generally low abundant and reside in complex biological matrices. These matrices typically contain protein concentrations that vastly exceed those of the EV proteome and contain particles in the same size and density range (e.g. protein aggregates and apolipoprotein particles). Therefore, extensive EV isolation and purification protocols are imperative and many have been developed, including (density) ultracentrifugation, size-exclusion and precipitation methods. Here, we describe an approach based on 300 kDa MWCO filtration, which allows processing of multiple samples in parallel within a reasonable timeframe and at moderate cost. We demonstrate that our strategy is capable of quantitatively retaining EV particles on filters, whilst allowing extensive washing with relatively high percentages of the mild detergent TWEEN-20. In addition, we provide evidence that the retained EVs can be recuperated from the filter for qualitative studies or can be directly lysed on the filter for the recovery of the EV protein cargo for proteome analysis. Applying this strategy on MCF7 conditioned medium using different percentages of serum, we observed dramatic changes in the EV proteome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3