Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost

Author:

Ellenbogen Jared B.ORCID,Borton Mikayla A.,McGivern Bridget B.,Cronin Dylan R.,Hoyt David W.,Freire-Zapata Viviana,McCalley Carmody K.,Varner Ruth K.,Crill Patrick M.,Wehr Richard A.,Chanton Jeffrey P.,Woodcroft Ben J.,Tfaily Malak M.,Tyson Gene W.,Rich Virginia I.,Wrighton Kelly C.

Abstract

AbstractWhile wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolisms is incomplete, which compromises prediction of CH4emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire, in arctic Sweden. In quadrupling the genomic representation of the site’s methanogens and examining their encoded metabolisms, we revealed that nearly 20% (72) of the metagenome-assembled genomes (MAGs) encoded potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; forMethanosarcinalesandMethanobacterialesMAGs, these data indicated use of methylated oxygen compounds (e.g., methanol), while forMethanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy, and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activity. Methanogenesis across increasing permafrost thaw is thus revised from sole dominance of hydrogenotrophic production, and the appearance of acetoclastic at full thaw, to consider co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3