Abstract
AbstractBackgroundSurgery and/or platinum-based chemoradiation remain standard of care for patients with head and neck squamous cell carcinoma (HNSCC). While these therapies are effective in a subset of patients, a substantial proportion experience recurrence or treatment resistance. As cisplatin mediates cytotoxicity through oxidative stress while polyamines play a role in redox regulation, we posited that combining cisplatin with polyamine transport inhibitor, AMXT-1501, would increase oxidative stress and tumor cell death in HNSCC cells.MethodsCell proliferation was measured in syngeneic mouse HNSCC cell lines treated with cisplatin ± AMXT-1501. Synergy was determined by administering cisplatin and AMXT-1501 at a ratio of 1:10 to cancer cellsin vitro. Cancer cells were transferred onto mouse flanks to test the efficacy of treatmentsin vivo. Reactive oxygen species (ROS) were measured. Cellular apoptosis was measured with flow cytometry using Annexin V/PI staining. High-performance liquid chromatography (HPLC) was used to quantify polyamines in cell lines. Cell viability and ROS were measured in the presence of exogenous cationic amino acids.ResultsThe combination of cisplatin and AMXT-1501 synergizein vitroon HNSCC cell lines.In vivocombination treatment resulted in tumor growth inhibition greater than either treatment individually. The combination treatment increased ROS production and induced apoptotic cell death. HPLC revealed the synergistic mechanism was independent of intracellular polyamine levels. Supplementation of cationic amino acids partially rescued cancer cell viability and reduced ROS.ConclusionAMXT-1501 enhances the cytotoxic effects of cisplatinin vitroandin vivoin aggressive HNSCC cell lines through a polyamine-independent mechanism.
Publisher
Cold Spring Harbor Laboratory