Cardiomyocyte mechanical memory is regulated through the talin interactome and DLC1 dependent regulation of RhoA

Author:

Marhuenda Emilie,Xanthis Ioannis,Pandey Pragati,Azad Amar,Richter Megan,Pavolvic Davor,Gehmlich Katja,Faggian Giuseppe,Ehler Elisabeth,Levitt James,Ameer-Beg Simon,Iskratsch Thomas

Abstract

AbstractMechanical properties are cues for many biological processes in health or disease. Likewise, in the heart it is becoming clearer that mechanical signals are critically involved in the disease progression. Cardiomyocytes sense the mechanical properties of their environment at costameres through integrins and associated proteins, including the mechanosensitive protein talin as an integral component. Our previous work indicated different modes of talin tension, depending on the extracellular matrix stiffness. Here, we wanted to study how this leads to downstream mechanotransduction changes, further influencing the cardiomyocyte phenotype. Combining immunoprecipitations and Fluorescence Recovery after Photobleaching (FRAP) experiments, we identify that the talin interacting proteins DLC1, RIAM and paxillin each preferentially bind to talin at specific extracellular matrix stiffness and this interaction is preserved even in absence of tension. This demonstrates a mechanical memory, which we confirm furtherin vivoin mouse hearts. The mechanical memory is regulated through adhesion related kinase pathways. Optogenetic experiments using the LOVTRAP systems confirm direct competition between the individual proteins, which again is altered through phosphorylation. DLC1 regulates RhoA activity in a stiffness dependent way and both loss and overexpression of DLC1 results in myofibrillar disarray. Together the study demonstrates a mechanism of imprinting mechanical information into the talin-interactome to finetune RhoA activity, with impacts on cardiac health and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3