AlphaFold2 models of the active form of all 437 catalytically competent human protein kinase domains

Author:

Faezov BulatORCID,Dunbrack Roland L.ORCID

Abstract

AbstractHumans have 437 catalytically competent protein kinase domains with the typical kinase fold, similar to the structure of Protein Kinase A (PKA). Only 155 of these kinases are in the Protein Data Bank in their active form. The active form of a kinase must satisfy requirements for binding ATP, magnesium, and substrate. From structural bioinformatics analysis of 40 unique substrate-bound kinases, we derived several criteria for the active form of protein kinases. We include requirements on the DFG motif of the activation loop but also on the positions of the N-terminal and C-terminal segments of the activation loop that must be placed appropriately to bind substrate. Because the active form of catalytic kinases is needed for understanding substrate specificity and the effects of mutations on catalytic activity in cancer and other diseases, we used AlphaFold2 to produce models of all 437 human protein kinases in the active form. This was accomplished with templates in the active form from the PDB and shallow multiple sequence alignments of orthologs and close homologs of the query protein. We selected models for each kinase based on the pLDDT scores of the activation loop residues, demonstrating that the highest scoring models have the lowest or close to the lowest RMSD to 22 non-redundant substrate-bound structures in the PDB. A larger benchmark of all 130 active kinase structures with complete activation loops in the PDB shows that 80% of the highest-scoring AlphaFold2 models have RMSD < 1.0 Å and 90% have RMSD < 2.0 Å over the activation loop backbone atoms. Models for all 437 catalytic kinases are available athttp://dunbrack.fccc.edu/kincore/activemodels. We believe they may be useful for interpreting mutations leading to constitutive catalytic activity in cancer as well as for templates for modeling substrate and inhibitor binding for molecules which bind to the active state.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3