Diabetes Detection from Diabetic Retinopathy-Absent Images Using Deep Learning Methodology

Author:

Rom YovelORCID,Aviv RachelleORCID,Cohen Gal YaakovORCID,Friedman Yehudit Eden,Dvey-Aharon ZackORCID

Abstract

AbstractAimsDiabetes is one of the leading causes of morbidity and mortality in the United States and worldwide. This research aimed to develop an artificial intelligence (AI) machine learning model which can detect the presence of diabetes from fundus imagery of eyes without diabetic eye disease.MethodsOur researchers trained a machine learning algorithm on the EyePACS dataset, consisting of 47,076 images. Patients were also divided into cohorts based on disease duration, each cohort consisting of patients diagnosed within the timeframe in question (e.g., 15 years) and healthy patients.ResultsThe algorithm achieved 0.83 area under receiver operating curve (AUC) in detecting diabetes per image, and AUC 0.86 on the task of detecting diabetes per patient.ConclusionOur results suggest that diabetes may be diagnosed non-invasively using fundus imagery alone. This may enable diabetes diagnosis at point of care, as well as other, accessible venues, facilitating the diagnosis of many undiagnosed people with diabetes.

Publisher

Cold Spring Harbor Laboratory

Reference22 articles.

1. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045

2. Centers for Disease Control and Prevention. National Diabetes Statistics Report | Diabetes | CDC. National Diabetes Statistics Report website 2022. Available at: https://www.cdc.gov/diabetes/data/statistics-report/index.html x[Accessed June 14, 2022].

3. Projection of the future diabetes burden in the United States through 2060;Population Health Metrics,2018

4. Impact of the population at risk of diabetes on projections of diabetes burden in the United States: an epidemic on the way

5. Long-Term Complications of Diabetes Mellitus

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3