Alzheimer’s disease associated isoforms of human CD33 distinctively modulate microglial cell responses in 5XFAD mice

Author:

Eskandari-Sedighi GhazalehORCID,Crichton Madeline,Zia SameeraORCID,Gomez Erik,St. Laurent Chris D.,Cortez Leonardo M.ORCID,Patel Zain H.,Sidhu Gaurav,Sarkar Susmita,Aghanya Vivian,Sim Valerie L.ORCID,Tan QiuminORCID,Julien OlivierORCID,Plemel Jason R.ORCID,Macauley Matthew S.ORCID

Abstract

AbstractMicroglia play diverse pathophysiological roles in Alzheimer’s disease (AD), with genetic susceptibility factors skewing microglial cell function to influence AD risk. CD33 is an immunomodulatory receptor associated with AD susceptibility through a single nucleotide polymorphism that modulates mRNA splicing, skewing protein expression from a long protein isoform (CD33M) to a short isoform (CD33m). Understanding how human CD33 isoforms differentially impact microglial cell functionin vivohas been challenging due to functional divergence of CD33 between mice and humans. We address this challenge by studying transgenic mice expressing either of the human CD33 isoforms crossed with the 5XFAD mouse model of amyloidosis and find that human CD33 isoforms have opposing effects on the response of microglia to amyloid-β (Aβ) deposition. Mice expressing CD33M have increased Aβ levels, mo7re diffuse plaques, fewer disease-associated microglia, and more dystrophic neurites compared to control 5XFAD mice. Conversely, CD33m promotes plaque compaction and microglia-plaque contacts, and minimizes neuritic plaque pathology, highlighting an AD protective role for this isoform. Protective phenotypes driven by CD33m are detected at an earlier timepoint compared to the more aggressive pathology in CD33M mice that appears at a later timepoint, suggesting that CD33m has a more prominent impact on microglia cell function at earlier stages of disease progression. In addition to divergent roles in modulating phagocytosis, scRNAseq and proteomics analyses demonstrate that CD33m+microglia upregulate nestin, an intermediate filament involved in cell migration, at plaque contact sites. Overall, our work provides new functional insights into how CD33, as a top genetic susceptibility factor for AD, modulates microglial cell function.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3