Multiomics responses to seasonal variations in diel cycles in the marine phytoplanktonic picoeukaryoteOstreococcus tauri

Author:

Romero-Losada Ana B.,Arvanitidou Christina,García-Gómez M. Elena,Morales-Pineda María,Castro-Pérez M. José,García-González Mercedes,Romero-Campero Francisco J.ORCID

Abstract

AbstractEarth tilted rotation and translation around the Sun produce one of the most pervasive periodic environmental signals on our planet giving rise to seasonal variations in diel cycles. Although marine phytoplankton plays a key role on ecosystems and present promising biotechnological applications, multiomics integrative analysis of their response to these rhythms remains largely unexplored. We have chosen the marine picoeukaryoteOstreococcus taurias model organism grown under summer long days, winter short days, constant light and constant dark conditions to characterize these responses in marine phytoplankton. Although 80% of the transcriptome present diel rhythmicity under both seasonal conditions less than 5% maintained oscillations under all constant conditions. A drastic reduction in protein abundance rhythmicity was observed with 55% of the proteome oscillating. Seasonally specific rhythms were found in key physiological processes such as cell cycle progression, photosynthetic efficiency, carotenoid content, starch accumulation and nitrogen assimilation. A global orchestration between transcriptome, proteome and physiological dynamics was observed with specific seasonal temporal offsets between transcript, protein and physiological peaks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3