Structural and Biological Evaluations of a Non-Nucleoside STING Agonist Specific for Human STINGA230Variants

Author:

Tang ZhichaoORCID,Zhao JunxingORCID,Li Ying,Tomer Shallu,Selvaraju ManikandanORCID,Tien Nicholas,Sun Diyun,Johnson David K.ORCID,Zhen Anjie,Li PingweiORCID,Wang JingxinORCID

Abstract

ABSTRACTPreviously we identified a non-nucleotide tricyclic agonist BDW568 that activates human STING (stimulator of interferon genes) gene variant containing A230 in a human monocyte cell line (THP-1). STINGA230alleles, including HAQ and AQ, are less common STING variants in human population. To further characterize the mechanism of BDW568, we obtained the crystal structure of the C-terminal domain of STINGA230complexed with BDW-OH (active metabolite of BDW568) at 1.95 Å resolution and found the planar tricyclic structure in BDW-OH dimerizes in the STING binding pocket and mimics the two nucleobases of the endogenous STING ligand 2’,3’-cGAMP. This binding mode also resembles a known synthetic ligand of human STING, MSA-2, but not another tricyclic mouse STING agonist DMXAA. Structure-activity-relationship (SAR) studies revealed that all three heterocycles in BDW568 and the S-acetate side chain are critical for retaining the compound’s activity. BDW568 could robustly activate the STING pathway in human primary peripheral blood mononuclear cells (PBMCs) with STINGA230genotype from healthy individuals. We also observed BDW568 could robustly activate type I interferon signaling in purified human primary macrophages that were transduced with lentivirus expressing STINGA230, suggesting its potential use to selectively activate genetically engineered macrophages in macrophage-based approaches, such as chimeric antigen receptor (CAR)-macrophage immunotherapies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3