Fecal Dysbiosis and Inflammation in Intestinal-Specific Cftr Knockout Mice on Regimens Preventing Intestinal Obstruction

Author:

Young Sarah M.,Woode Rowena A.ORCID,Williams Estela,Ericsson AaronORCID,Clarke Lane L.ORCID

Abstract

AbstractChronic intestinal inflammation is a poorly understood manifestation of Cystic Fibrosis (CF), which may be refractory to ion channel CFTR modulator therapy. People with CF exhibit intestinal dysbiosis which has potential for stimulating intestinal and systemic inflammation. CFTR is expressed in organ epithelia and in the leukocyte population. Here, we investigate the contribution of intestinal epithelial-specific loss of Cftr (iCftr KO) to dysbiosis and inflammation in mice treated with either of two anti-obstructive dietary regimens necessary to maintain CF mouse models (PEG laxative or a liquid diet, LiqD). Feces collected from iCftr KO mice and their wildtype (WT) sex-matched littermates were used to measure fecal calprotectin and to perform 16S rRNA sequencing to characterize the gut microbiome. Fecal calprotectin was elevated in iCftr KO relative to WT samples of mice consuming either PEG or LiqD. PEG iCftr KO mice did not show a change in α-diversity versus WT but demonstrated a significant difference in microbial composition (β-diversity) with increases in phylumProteobacteria, familyPeptostreptococcaceae, four genera ofClostridiaincludingC. innocuum, and mucolytic genusAkkermansia. Fecal microbiome analysis of LiqD iCftr KO mice showed both decreased α-diversity and differences in microbial composition with increases inProteobacteriafamilyEnterobacteriaceae,FirmicutesfamiliesClostridiaceaeandPeptostreptococcaceae, and enrichment ofClostridium perfringens,C. innocuum,C. difficile, mucolyticRuminococcus gnavus, and reduction ofAkkermansia. It was concluded that epithelial-specific loss of Cftr is a major driver of CF intestinal dysbiosis and inflammation with significant similarities to previous studies of global Cftr KO mice.New and noteworthyChronic intestinal inflammation is a manifestation of cystic fibrosis (CF), a disease caused by loss of the anion channel CFTR that is expressed in many tissues. This study shows that intestinal epithelial cell-specific loss of CFTR (iCftr KO) in mice is sufficient to induce intestinal dysbiosis and inflammation. Studies were performed on mice consuming either dietary regimen (PEG laxative or liquid diet) routinely used to prevent obstruction in CF mice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3