Single tyrosine mutation in VE-cadherin modulates gene lung expressions: evidence for FOXF1 mediated S1PR1 upregulation to stabilize vessels in mice

Author:

Garnier Olivia,Jeanneret FlorianORCID,Durand Aude,Fertin Arnold,Martin Donald,Berndt Sarah,Carpentier Gilles,Battail Christophe,Vilgrain Isabelle

Abstract

ABSTRACTRationalePhosphorylation-dephosphorylation are processes involved in the adhesion of endothelial cells (ECs) to maintain vascular integrity in adults. VE-cadherin is a target for Src-mediated Y685phosphorylation, identified in highly vascularized human glioblastoma where it is involved in the abnormal feature of tumor blood vessels.ObjectiveWe aimed at understanding the molecular mechanisms through which Y685F-VE-cadherin triggers S1PR1 gene expression and stabilizes lung vessels in adult mice.Methods and ResultsWe compared lung ECs from a knock-in (KI) mouse carrying a point mutation in VE-cadherin (Tyr 685 to Phe) to Wild type. Analysis of EC parameters showed a difference in the migratory rate was between ECs from KI (22.45% ± 5.207) and WT (13.24% ± 5.17) (p-value=0.034). The direct adhesion of ECs from KI mice to fibronectin was significantly higher (37.625 ± 9.23) than that of the WT (26.8 ± 3.258, p-value=0.012). In the fibrin bead assay, ECs from KI showed a weaker angiogenic response. The transcriptome of mutated ECs showed that 884 genes were dysregulated of which 766 genes were downregulated and 118 genes were upregulated. The Gene Ontology Enrichment showed that most of the genes were related to cell-cell adhesion and angiogenesis. Focusing on angiogenic genes, we found that Sphingosine-1-phosphate-receptor was a gene upregulated in mutated ECs which was confirmed by RT-PCR and westernblotting. Mechanistically, chromatin immunoprecipitation assay (CHIPS) demonstrated that FOXF1 directly bound to the S1pr1 promoter 7 fold greater than WT. As a consequence, VE-cadherin at the membrane was higher in the mutant vs WT (100 ± 6.52 for WT vs 189.7 ± 21.06 for KI (p-value 0.0001). Finally, lung morphometric analysis showed less vessels and vascular remodeling with no fibrosis in mutated mice.ConclusionsThese data extend our knowledge on pY-VE-cadherin mediated pathological angiogenesis and provide new therapeutic opportunities to vascular normalization through pharmacological inhibition of the Y685-VE-cadherin phosphorylation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3