Abstract
AbstractThe differentiation of human pluripotent stem cells (hPSCs) provides access to most cell types and tissues. However, hPSC-derived lineages capture a fetal-stage of development and methods to accelerate progression to an aged identity are limited. Understanding the factors driving cellular age and rejuvenation is also essential for efforts aimed at extending human life and health span. A prerequisite for such studies is the development of methods to score cellular age and simple readouts to assess the relative impact of various age modifying strategies.Here we established a transcriptional score (RNAge) in young versus old primary fibroblasts, frontal cortex and substantia nigra tissue. We validated the score in independent RNA-seq datasets and demonstrated a strong cell and tissue specificity. In fibroblasts we observed a reset of RNAge during iPSC reprogramming while direct reprogramming of aged fibroblasts to induced neurons (iN) resulted in the maintenance of both a neuronal and a fibroblast aging signature. Increased RNAge in hPSC-derived neurons was confirmed for several age-inducing strategies such as SATB1 loss, progerin expression or chemical induction of senescence (SLO). Using RNAge as a probe set, we next performed an in-silico screen using the LINCS L1000 dataset. We identified and validated several novel age-inducing and rejuvenating compounds, and we observed that RNAage captures age-related changes associated with distinct cellular hallmarks of age. Our study presents a simple tool to score age manipulations and identifies compounds that greatly expand the toolset of age-modifying strategies in hPSC derived lineages.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献