Probing the physiological role of the plastid outer-envelope membrane using the oemiR plasmid collection

Author:

Schwenkert SerenaORCID,Lo Wing Tung,Szulc Beata,Yip Chun Kwan,Pratt Anna I.,Cusack Siobhan A.,Brandt Benjamin,Leister Dario,Kunz Hans-Henning

Abstract

AbstractPlastids are the site of complex biochemical pathways, most prominently photosynthesis. The organelle evolved through endosymbiosis with a cyanobacterium, which is exemplified by the outer envelope (OE) membrane that harbors more than 40 proteins in Arabidopsis. Their evolutionary conservation indicates high significance for plant cell function. While a few proteins are well-studied as part of the protein translocon complex the majority of OE protein (OEP) functions is unclear. Gaining a deeper functional understanding has been complicated by the lack of observable loss-of-function mutant phenotypes, which is often rooted in functional genetic redundancy. Therefore, we designed OE-specific artificial micro RNAs (oemiRs) capable of downregulating transcripts from several loci simultaneously. We successfully tested oemiR function by performing a proof-of-concept screen for pale and cold-sensitive mutants. An in-depth analysis of pale mutant alleles deficient in the translocon component TOC75 using proteomics provided new insights into putative compensatory import pathways. The cold stress screen not only recapitulated three previously known phenotypes of cold-sensitive mutants, but also identified four mutants of additional oemiR OE loci. Altogether our study revealed a role of the OE to tolerate cold conditions and showcasts the power of the oemiR collection to research the significance of OEPs.

Publisher

Cold Spring Harbor Laboratory

Reference102 articles.

1. A mutation of theCRUMPLED LEAFgene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division inArabidopsis

2. Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana

3. A molecular-genetic study of the Arabidopsis Toc75 gene family;Plant Physiol t,2005

4. A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea;EMBO J. t,1999

5. Unraveling Hidden Components of the Chloroplast Envelope Proteome: Opportunities and Limits of Better MS Sensitivity;Mol Cell Proteomics t,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3