Reinforcement learning-guided control strategies for CAR T-cell activation and expansion

Author:

Ferdous Sakib,Shihab Ibne Farabi,Chowdhury Ratul,Reuel Nigel F.ORCID

Abstract

AbstractReinforcement learning (RL), a subset of machine learning (ML), can potentially optimize and control biomanufacturing processes, such as improved production of therapeutic cells. Here, the process of CAR-T cell activation by antigen presenting beads and their subsequent expansion is formulatedin-silico. The simulation is used as an environment to train RL-agents to dynamically control the number of beads in culture with the objective of maximizing the population of robust effector cells at the end of the culture. We make periodic decisions of incremental bead addition or complete removal. The simulation is designed to operate in OpenAI Gym which enables testing of different environments, cell types, agent algorithms and state-inputs to the RL-agent. Agent training is demonstrated with three different algorithms (PPO, A2C and DQN) each sampling three different state input types (tabular, image, mixed); PPO-tabular performs best for this simulation environment. Using this approach, training of the RL-agent on different cell types is demonstrated, resulting in unique control strategies for each type. Sensitivity to input noise (sensor performance), number of control step interventions, and advantage of pre-trained agents are also evaluated. Therefore, we present a general computational framework to maximize the population of robust effector cells in CAR-T cell therapy production.Author SummaryCustom control strategies for expansion and activation of patient-specific CAR T-cell therapies resolved by reinforcement learning using a simulation environment and updatable cell growth parameters.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3