Abstract
ABSTRACTSingle-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and dissecting transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins, as in cells of the immune system. Cellular Indexing of Transcriptomes and Epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell type annotation requires a classifier that integrates this multimodal data. Here, we describeMultiModalClassifierHierarchy (MMoCHi), a marker-based approach for classification, reconciling gene and protein expression without reliance on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal novel subset markers. MMoCHi is designed for adaptability and can integrate CITE-seq annotation of cell types and developmental states across diverse lineages, tissues, or individuals.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献