Developmental alignment of feedforward inputs and recurrent network activity drives increased response selectivity and reliability in primary visual cortex following the onset of visual experience

Author:

Lempel Augusto A.ORCID,Fitzpatrick David

Abstract

AbstractSelective and reliable cortical sensory representations depend on synaptic interactions between feedforward inputs, conveying information from lower levels of the sensory pathway, and recurrent networks that reciprocally connect neurons functioning at the same hierarchical level. Here we explore the development of feedforward/recurrent interactions in primary visual cortex of the ferret that is responsible for the representation of orientation, focusing on the feedforward inputs from cortical layer 4 and its relation to the modular recurrent network in layer 2/3 before and after the onset of visual experience. Using simultaneous laminar electrophysiology and calcium imaging we found that in experienced animals, individual layer 4 and layer 2/3 neurons exhibit strongly correlated responses with the modular recurrent network structure in layer 2/3. Prior to experience, layer 2/3 neurons exhibit comparable modular correlation structure, but this correlation structure is missing for individual layer 4 neurons. Further analysis of the receptive field properties of layer 4 neurons in naïve animals revealed that they exhibit very poor orientation tuning compared to layer 2/3 neurons at this age, and this is accompanied by the lack of spatial segregation of ON and OFF subfields, the definitive property of layer 4 simple cells in experienced animals. Analysis of the response dynamics of layer 2/3 neurons with whole-cell patch recordings confirms that individual layer 2/3 neurons in naïve animals receive poorly-selective feedforward input that does not align with the orientation preference of the layer 2/3 responses. Further analysis reveals that the misaligned feedforward input is the underlying cause of reduced selectivity and increased response variability that is evident in the layer 2/3 responses of naïve animals. Altogether, our experiments indicate that the onset of visual experience is accompanied by a critical refinement in the responses of layer 4 neurons and the alignment of feedforward and recurrent networks that increases the selectivity and reliability of the representation of orientation in V1.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3