Abstract
AbstractBackgroundThe ongoing COVID-19 pandemic has seen several variants of concern, including the Omicron (BA.1) variant which emerged in October 2021. Accurately estimating the incubation period of these variants is crucial for predicting disease spread and formulating effective public health strategies. However, existing estimates often conflict because of biases arising from the dynamic nature of epidemic growth and selective inclusion of cases. This study aims to accurately estimate of the Omicron (BA.1) variant incubation period based on data from Taiwan, where disease incidence remained low and contact tracing was comprehensive during the first months of the Omicron outbreak.MethodsWe reviewed 100 contact-tracing records for cases of the Omicron BA.1 variant reported between December 2021 and January 2022, and found enough information to analyze 70 of these. The incubation period distribution was estimated by fitting data on exposure and symptom onset within a Bayesian mixture model using gamma, Weibull, and lognormal distributions as candidates. Additionally, a systematic literature search was conducted to accumulate data for estimates of the incubation period for Omicron (BA.1/2, BA.4/5) subvariants, which was then used for meta-analysis and comparison.ResultsThe mean incubation period was estimated at 3.5 days (95% credible interval: 3.1–4.0 days), with no clear differences when stratified by vaccination status or age. This estimate aligns closely with the pooled mean of 3.4 days (3.0–3.8 days) obtained from a meta-analysis of other published studies on Omicron subvariants.ConclusionsThe relatively shorter incubation period of the Omicron variant, as compared to previous SARS-CoV2 variants, implies its potential for rapid spread but also opens the possibility for individuals to voluntarily adopt shorter, more resource-efficient quarantine periods. Continual updates to incubation period estimates, utilizing data from comprehensive contact tracing, are crucial for effectively guiding these voluntary actions and adjusting high socio-economic cost interventions.
Publisher
Cold Spring Harbor Laboratory