Abstract
SUMMARYSkeletal muscle contains a resident population of somatic stem cells capable of both self-renewal and differentiation. The signals that regulate this important decision have yet to be fully elucidated. Here we use metabolomics and mass spectrometry imaging (MSI) to identity a state of localized hyperglycaemia following skeletal muscle injury. We show that committed muscle progenitor cells exhibit an enrichment of glycolytic and TCA cycle genes and that extracellular monosaccharide availability regulates intracellular citrate levels and global histone acetylation. Muscle stem cells exposed to a reduced (or altered) monosaccharide environment demonstrate reduced global histone acetylation and transcription of myogenic determination factors (includingmyod1). Importantly, reduced monosaccharide availability was linked directly to increased rates of asymmetric division and muscle stem cell self-renewal in regenerating skeletal muscle. Our results reveal an important role for the extracellular metabolic environment in the decision to undergo self-renewal or myogenic commitment during skeletal muscle regeneration.
Publisher
Cold Spring Harbor Laboratory