Systematic characterization of site-specific proline hydroxylation using hydrophilic interaction chromatography and mass spectrometry

Author:

Jiang HaoORCID,Druker Jimena,Wilson James W.,Bensaddek Dalila,Swedlow Jason R.ORCID,Rocha SoniaORCID,Lamond Angus I.ORCID

Abstract

AbstractTo improve understanding of the role of site-specific proline hydroxylation in controlling protein function, we have developed a robust workflow for the identification of proline hydroxylation sites in proteins using a combination of hydrophilic interaction chromatography (HILIC) enrichment and high-resolution nano-Liquid Chromatography-Mass Spectrometry (LC-MS). Using this approach, together with refining and filtering parameters during data analysis, by combining the results from cell lines being treated with either the prolyl hydroxylase inhibitor Roxadustat (FG-4592, FG) or the proteasome inhibitor MG-132 (MG), or DMSO, a total of 4,993 and 3,247 proline hydroxylation sites were identified in HEK293 and RCC4 samples, respectively. A subset of 1,954 and 1,253 high confident proline hydroxylation sites (non-collagen) from HEK293 and RCC4 samples were inhibited by FG-4592 treatment. A set of features characteristic of proline hydroxylated peptides were identified in both datasets, which differ from either unmodified peptides, or oxidised peptides. Peptides containing hydroxyproline were enriched in the more hydrophilic HILIC fractions and showed characteristic differences in charge and mass distribution, as compared with unmodified or oxidised peptides. Furthermore, we discovered that the intensity of the diagnostic hydroxyproline immonium ion was greatly influenced by parameters including the MS collision energy setting, parent peptide concentration and the sequence of adjacent amino acids neighbouring the modified proline. We show using synthetic peptides that a combination of retention time in LC and optimised MS parameter settings allows reliable identification of proline hydroxylation sites in peptides, even when multiple prolines residues are present. By matching all the proline hydroxylated, non-collagen proteins to the Pfam database, the most common protein family domains identified in both HEK293 and RCC4 datasets were RNA recognition motif (RRM_1), WD40 repeat (WD40), and protein kinase domain (Pkinase). Sequence analysis of the hydroxylated peptides showed enrichment for the motif GxPGxx, including the Gxx repeats found in collagen proteins, as well as the protein kinase domain GTP motif. Glycine (G), serine (S) and glutamic acid (E) residues were found frequently in the sequence window from the hydroxylated peptides. Reactome pathway analysis for the proteins of these newly identified proline hydroxylation sites (FG inhibited), showed enrichment for proteins involved in metabolism of RNA, mRNA splicing and cell cycle regulation, potentially mediated by prolyl hydroxylase enzymes (PHDs).

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3