Abstract
AbstractShh signaling is the morphogen signaling that regulates embryonic craniofacial and neural tube development. G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling, and its inactivation in mice results in embryo lethality with craniofacial and neural tube defects (NTDs). However, the structural defects of later embryonic stages inGpr161null mice and cell lineages underlying abnormalities were not well characterized due to their limited lifespan. We found thePax3lineage-specific deletion ofGpr161in mice presented with tectal hypertrophy (anterior dorsal neuroepithelium), cranial vault and facial bone hypoplasia (cranial neural crest (CNC)), vertebral abnormalities (somite), and the closed form of spina bifida (posterior dorsal neuroepithelium). In particular, the closed form of spina bifida is partly due to the reducedPax3andCdx4gene expression of the posterior dorsal neural tubes ofGpr161mutant embryos involving decreased Wnt signaling whereas Shh signaling was increased. This study provides the novel role of Gpr161 in the posterior neural tube development and confirms its role on CNC- and somite-derived skeletogenesis and midbrain morphogenesis in mice.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献