Tetracycline transactivator overexpression in keratinocytes triggers a TRPV1 primary sensory neuron-dependent neuropathic itch

Author:

Crowther Andrew J.ORCID,Kashem Sakeen W.,Jewell Madison E.,Chang Henry Le,Casillas Mariela RosaORCID,Midavaine Élora,Rodriguez Sian,Braz Joao M.,Kania Artur,Basbaum Allan I.

Abstract

AbstractMouse models that combine tetracycline-controlled gene expression systems and conditional genetic activation can tightly regulate transgene expression in discrete cell types and tissues. However, the commonly used Tet-Off variant, tetracycline transactivator (tTA), when overexpressed and fully active, can lead to developmental lethality, disease, or more subtle behavioral phenotypes. Here we describe a profound itch phenotype in mice expressing a genetically encoded tTA that is conditionally activated within the Phox2a lineage. Phox2a; tTA mice develop intense, localized scratching and regional skin lesions that can be controlled by the tTA inhibitor, doxycycline. As gabapentin, but not morphine, relieved the scratching, we consider this phenotype to result from chronic neuropathic itch, not pain. In contrast to the Phox2a lineage, mice with tTA activated within the Phox2b lineage, which has many similar areas of recombination within the nervous system, did not recapitulate the scratching phenotype. In Phox2a-Cre mice, but not Phox2b-Cre, intense Cre-dependent reporter expression was found in skin keratinocytes which formed the area at which skin lesions developed. Most interestingly, repeated topical application of the DREADD agonist, CNO, which chronically induced Gisignaling in Phox2a-keratinocytes, completely reversed the localized scratching and skin lesions. Furthermore, ablation of TRPV1-expressing, primary afferent neurons reduced the scratching with a time course comparable to that produced by Gi-DREADD inhibition. These temporal properties suggest that the neuropathic itch condition arises not only from localized keratinocyte activation of peripheral nerves but also from a persistent, gabapentin-sensitive state of central sensitization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3