Prolonged activity-deprivation causes pre- and postsynaptic compensatory plasticity at neocortical excitatory synapses

Author:

Wise Derek L.ORCID,Escobedo-Lozoya Yasmin,Valakh Vera,Isaac Berith,Gao Emma Y.,Greene Samuel B.,Bhonsle Aishwarya,Lei Qian L.,Cheng Xinyu,Van Hooser Stephen D.ORCID,Nelson Sacha B.ORCID

Abstract

ABSTRACTHomeostatic plasticity stabilizes firing rates of neurons, but the pressure to restore low activity rates can significantly alter synaptic and cellular properties. Most previous studies of homeostatic readjustment to complete activity silencing in rodent forebrain have examined changes after two days of deprivation, but it is known that longer periods of deprivation can produce adverse effects. To better understand the mechanisms underlying these effects and to address how presynaptic as well as postsynaptic compartments change during homeostatic plasticity, we subjected mouse cortical slice cultures to a more severe five-day deprivation paradigm. We developed and validated a computational framework to measure the number and morphology of presynaptic and postsynaptic compartments from super resolution light microscopy images of dense cortical tissue. Using these tools, combined with electrophysiological miniature excitatory postsynaptic current measurements, and synaptic imaging at the electron microscopy level, we assessed the functional and morphological results of prolonged deprivation. Excitatory synapses were strengthened both presynaptically and postsynaptically. Surprisingly, we also observed a decrement in the density of excitatory synapses, both as measured from colocalized staining of pre- and postsynaptic proteins in tissue, and from the number of dendritic spines. Overall, our results suggest that cortical networks deprived of activity progressively move towards a smaller population of stronger synapses.SIGNIFICANCE STATEMENTBlocking activity in neocortical slice cultures produced coordinated pre and postsynaptic changes at excitatory synapses. Functional and structural assays suggest that deprivation results in fewer excitatory synapses, but each is strengthened both pre- and postsynaptically. This may contribute to the emergence of epileptiform activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3