The role of squid for food web structure and community-level metabolism

Author:

Denéchère RémyORCID,van Denderen P. DaniëlORCID,Andersen Ken H.ORCID

Abstract

AbstractSquid differ from fish by their high growth rate, short life span and feeding behaviour. Their fast life strategy is thought to impose a high predation pressure on zooplankton, fish and other squid preys, and a rapid transfer of energy to upper trophic-levels of marine food webs. However, there is a lack of understanding of how squid’s fast life cycle affects the food-web structure, which is needed to project squid biomass across marine regions under shifting climatic conditions. Here, we examine the role of squid on community metabolism and biomass by collecting data on squid somatic growth and incorporating squid in a size- and trait-based fish community model. We show that squid have a 5 times higher average somatic growth rate than fish. Due to their high food demands, squid are constrained to regions of high pelagic secondary production. The presence of squid in these systems is associated with a reduction in total upper trophic level biomass. This decline is caused by an increase in community-level respiration losses associated with squid. Our results indicate that squid might have a large impact on ecosystem structure even at relatively low standing stock biomasses. Consequently, the recent proliferation of squid in ecosystems around the world is likely to have significant ecological and socio-economic impacts.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3