Novel centriolar defects underlie a primary ciliary dyskinesia phenotype in an adenylate kinase 7 deficient ciliated epithelium

Author:

Sheridan Jennifer,Grata Aline,Suva Eve E.,Bresteau Enzo,Mitchell Linus R.,Hassan Osama,Mitchell BrianORCID

Abstract

AbstractThe skin ofXenopusembryos contains numerous multiciliated cells (MCCs), which collectively generate a directed fluid flow across the epithelial surface essential for distributing the overlaying mucous. MCCs develop into highly specialized cells to generate this flow, containing approximately 150 evenly spaced centrioles that give rise to motile cilia. MCC-driven fluid flow can be impaired when ciliary dysfunction occurs, resulting in primary ciliary dyskinesia (PCD) in humans. Mutations in a large number of genes (∼50) have been found to be causative to PCD. Recently, studies have linked low levels of Adenylate Kinase 7 (AK7) gene expression to patients with PCD; however, the mechanism for this link remains unclear. Additionally, AK7 mutations have been linked to multiple PCD patients. Adenylate kinases modulate ATP production and consumption, with AK7 explicitly associated with motile cilia. Here we reproduce an AK7 PCD-like phenotype inXenopusand describe the cellular consequences that occur with manipulation of AK7 levels. We show that AK7 localizes throughout the cilia in a DPY30 domain-dependent manner, suggesting a ciliary function. Additionally, we find that AK7 overexpression increases centriole number, suggesting a role in regulating centriole biogenesis. We find that in AK7-depleted embryos, cilia number, length, and beat frequency are all reduced, which in turn, significantly decreases the tissue-wide mucociliary flow. Additionally, we find a decrease in centriole number and an increase in sub-apical centrioles, implying that AK7 influences both centriole biogenesis and docking, which we propose underlie its defect in ciliogenesis. We propose that AK7 plays a role in PCD by impacting centriole biogenesis and apical docking, ultimately leading to ciliogenesis defects that impair mucociliary clearance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3