Author:
Nadjar Julien,Monnier Sylvain,Bastien Estelle,Huber Anne-Laure,Oddou Christiane,Bardoulet Léa,Ichim Gabriel,Vanbelle Christophe,Py Bénédicte,Destaing Olivier,Petrilli Virginie
Abstract
AbstractInflammasomes are multiprotein platforms which control caspase-1 activation, leading to the processing of proinflammatory cytokines into mature and active cytokines IL-1β and IL-18, and to pyroptosis through the cleavage of gasdermin-D (GSDMD). Inflammasomes assemble upon activation of specific cytosolic pattern recognition receptors (PRRs) by damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). They converge to the nucleation of apoptosis-associated speck-like containing a caspase activation and recruitment domain (ASC) to form hetero-oligomers with caspase-1. Studying inflammasome encoding activities remains challenging because PAMPs and DAMPs are sensed by a large diversity of cytosolic and membranous PRRs. To bypass the different signals required to activate the inflammasome, we designed an optogenetic approach to temporally and quantitatively manipulate ASC assembly (i.e.in a PAMP- or DAMP-independent manner). We reveal that controlling light-sensitive oligomerization of ASC is sufficient to recapitulate the classical features of inflammasomes within minutes, and enabled us to decipher the complexity of volume regulation and pore opening during pyroptosis. Overall, this approach offers interesting perspective to decipher PRR signaling pathways in the field of innate immunity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献