Fine-scale contemporary recombination variation and its fitness consequences in adaptively diverging stickleback fish

Author:

Venu VrindaORCID,Harjunmaa Enni,Dreau Andreea,Brady Shannon,Absher Devin,Kingsley David,Jones FelicityORCID

Abstract

AbstractDespite deep evolutionary conservation, recombination varies greatly across the genome, among individuals, sexes, and populations and can be a major evolutionary force in the wild. Yet this variation in recombination and its impact on adaptively diverging populations is not well understood. To elucidate the nature and potential consequences of recombination rate variation, we characterized fine-scale recombination landscapes by combining pedigrees, functional genomics and field fitness measurements in an adaptively divergent pair of marine and freshwater threespine stickleback populations from River Tyne, Scotland. Through whole-genome sequencing of large nuclear families, we identified the genomic location of almost 50,000 crossovers and built recombination maps for 36 marine, freshwater, and hybrid individuals at 3.8 kilobase resolution. Using these maps, we quantified the factors driving variation in recombination rate: we find strong heterochiasmy between sexes (68% of the variation) but also differences among ecotypes (21.8%). Hybrids show evidence of significant recombination suppression, both in overall map length and in individual loci. We further tested and found reduced recombination rates both within single marine–freshwater adaptive loci and between loci on the same chromosome, suggestive of selection on linked ‗cassettes‘. We tested theory supporting the evolution of linked selection using temporal sampling along a natural hybrid zone, and found that recombinants with shuffled alleles across loci show traits associated with reduced fitness. Our results support predictions that divergence in cis-acting recombination modifiers whose mechanisms are disrupted in hybrids, may have an important role to play in the maintenance of differences among adaptively diverging populations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3