Age and Task Modulate Olfactory Sensitivity in the Florida Carpenter AntCamponotus floridanus

Author:

Ferguson S.T.,Bakis I.,Edwards N.D.,Zwiebel L.J.ORCID

Abstract

AbstractAge-related changes in behavior and sensory perception have been observed in a wide variety of animal species. In ants and other eusocial insects, workers often progress through an ordered sequence of olfactory-driven behavioral tasks. Notably, these behaviors are plastic, and workers adapt and rapidly switch tasks in response to changing environmental conditions. In the Florida carpenter ant, smaller minors typically perform most of the work needed to maintain the colony while the larger majors are specialized for nest defense and rarely engage in these routine tasks. Here, we investigate the effects of age and task group on olfactory responses to a series of odorant blends in minor and major worker castes. Consistent with their respective roles within the colony, we observed significant age-associated shifts in the olfactory responses of minors as they transitioned between behavioral states, whereas the responses of majors remained consistently low regardless of age. Furthermore, we identified a unitary compound, 3-methylindole, which elicited significantly higher responses and behavioral aversion in minor nurses than in similarly aged foragers suggesting that this compound may play an important role in brood care. Taken together, our results suggest that age- and task-associated shifts in olfactory physiology may play a critical role in the social organization of ant colonies.Simple SummaryFlorida carpenter ants (Camponotus floridanus) live in colonies comprised of thousands of workers. The smallest workers, known as minors, engage in routine tasks such as nursing and foraging while the largest workers, known as majors, are thought to be soldiers specialized for defending the nest. How ant colonies allocate their workforce to address the dynamic and ever-changing needs of the colonies remains an open question in the field, but current evidence suggests that ant social behavior likely results from a combination of genetic/epigenetic, physiological, and systems-level processes. Here, we extend these studies by investigating the role of olfactory sensitivity in regulating ant behavior. Minor workers exhibited significant shifts in olfactory sensitivity and odor coding as they aged and switched tasks. The olfactory sensitivity of majors, however, remained relatively stable as they aged. From these studies, we also identified a single compound, 3-methylindole, which elicited significantly higher olfactory responses and aversive behavior in nurses compared to foragers, suggesting that this chemical may have a role in brood care. Overall, these studies support the hypothesis that changes in olfactory sensitivity play an important role in regulating social behavior in ants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3